Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present extensive ultraviolet, optical, and near-infrared (NIR) photometric and spectroscopic observations of the nearby hydrogen-poor superluminous supernova (SLSN-I) SN 2024rmj atz= 0.1189. SN 2024rmj reached a peak absolute magnitude ofMg ≈ −21.9, placing it at the luminous end of the SLSN-I distribution. The light curve exhibits a pronounced prepeak bump (≈60 days before the main peak) and a postpeak bump (≈55 days after the main peak). The bulk of the light curve is otherwise well fit by a magnetar spin-down model, with typical values (spin: ≈2.1 ms; magnetic field: ≈6 × 1013G; ejecta mass: ≈12M⊙). The optical spectra exhibit characteristic SLSN-I features and evolution, but with a relatively high velocity of ≈8000 km s−1postpeak. Most significantly, we find a clear detection of helium in the NIR spectra at Heiλ1.083μm andλ2.058μm, blueshifted by ≈15,000 km s−1(13 days before peak) and ≈13,000 km s−1(40 days after peak), indicating that helium is confined to the outermost ejecta; based on these NIR detections, we also identify likely contribution from Heiλ5876 in the optical spectra on a similar range of timescales. This represents the most definitive detection of helium in a bright SLSN-I to date, and indicates that progenitors with a thin helium layer can still explode as SLSNe.more » « lessFree, publicly-accessible full text available October 9, 2026
-
Abstract GRB 221009A is one of the brightest transients ever observed, with the highest peak gamma-ray flux for a gamma-ray burst (GRB). A Type Ic-BL supernova (SN), SN 2022xiw, was definitively detected in late-time JWST spectroscopy (t= 195 days, observer frame). However, photometric studies have found SN 2022xiw to be less luminous (10%−70%) than the canonical GRB-SN, SN 1998bw. We present late-time Hubble Space Telescope (HST)/WFC3 and JWST/NIRCam imaging of the afterglow and host galaxy of GRB 221009A att∼185, 277, and 345 days post-trigger. Our joint archival ground, HST, and JWST light-curve fits show strong support for a break in the light-curve decay slope att= 50 ± 10 days (observer frame) and a SN at <1.5× the optical/near-IR flux of SN 1998bw. This break is consistent with an interpretation as a jet break when requiring slow-cooling electrons in a wind medium with an electron energy spectral indexp> 2 andνm<νc. Our light curves and joint HST/JWST spectral energy distribution (SED) also show evidence for the late-time emergence of a bluer component in addition to the fading afterglow and SN. We find consistency with the interpretations that this source is either a young, massive, low-metallicity star cluster or a scattered-light echo of the afterglow with a SED shape offν∝ν2.0±1.0.more » « lessFree, publicly-accessible full text available May 9, 2026
-
Abstract We present deep James Webb Space Telescope near-infrared imaging to search for a quiescent or transient counterpart to FRB 20250316A, which was precisely localized with the CHIME Outriggers array to an area of 11 × 13 pc in the outer regions of NGC 4141 atd≈ 40 Mpc. Our F150W2 image reveals a faint source near the center of the fast radio burst (FRB) localization region (“NIR-1”;MF150W2≈ −2.5 mag; probability of chance coincidence ≈0.36), the only source within ≈2.7σ. We find that it is too faint to be a globular cluster, a young star cluster, a red supergiant star, or a giant star near the tip of the red giant branch (RGB). It is instead consistent with a red giant near the RGB “clump” or a massive (≳20M⊙) main-sequence star, although the latter explanation is less likely. The source is too bright to be a supernova (SN) remnant, Crab-like pulsar wind nebula, or isolated magnetar. Alternatively, NIR-1 may represent transient emission, namely a dust echo from an energetic outburst associated with the FRB, in which case we would expect it to fade in future observations. We explore the stellar population near the FRB and find that it is composed of a mix of young massive stars (∼10–100 Myr) in a nearby Hiiregion that extends to the location of FRB 20250316A and old evolved stars (≳Gyr). The overlap with a young stellar population, containing stars of up to ≈20M⊙, may implicate a neutron star/magnetar produced in the core collapse of a massive star as the source of FRB 20250316A.more » « lessFree, publicly-accessible full text available August 20, 2026
-
Abstract We present a detailed study of SN 2024ahr, a hydrogen-poor superluminous supernova (SLSN-I), for which we determine a redshift ofz= 0.0861. SN 2024ahr has a peak absolute magnitude ofMg≈Mr≈ −21 mag, rest-frame rise and decline times (50% of peak) of about 40 and 80 days, respectively, and typical spectroscopic evolution in the optical band. Similarly, modeling of the UV/optical light curves with a magnetar spin-down engine leads to typical parameters: an initial spin period of ≈3.3 ms, a magnetic field strength of ≈6 × 1013G, and an ejecta mass of ≈9.5M⊙. Due to its relatively low redshift, we obtained a high signal-to-noise ratio near-IR (NIR) spectrum about 43 rest-frame days postpeak to search for the presence of helium. We do not detect any significant feature at the location of the Heiλ2.058μm feature and place a conservative upper limit of ∼0.05M⊙on the mass of helium in the outer ejecta. We detect broad features of Mgiλ1.575μm and Mgiiλ2.136μm, which are typical of Type Ic SNe, but with higher velocities. Examining the sample of SLSNe-I with NIR spectroscopy, we find that, unlike SN 2024ahr, these events are generally peculiar. This highlights the need for a large sample of prototypical SLSNe-I with NIR spectroscopy to constrain the fraction of progenitors with helium (Ib-like) and without helium (Ic-like) at the time of explosion, and hence the evolutionary path(s) leading to the rare outcome of SLSNe-I.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Abstract We present rest-frame UV Hubble Space Telescope imaging of the largest and most complete sample of 23 long-duration gamma-ray burst (GRB) host galaxies between redshifts 4 and 6. Of these 23, we present new WFC3/F110W imaging for 19 of the hosts, which we combine with archival WFC3/F110W and WFC3/F140W imaging for the remaining four. We use the photometry of the host galaxies from this sample to characterize both the rest-frame UV luminosity function (LF) and the size–luminosity relation of the sample. We find that when assuming the standard Schechter-function parameterization for the UV LF, the GRB host sample is best fit with and mag, which are consistent with results based onz∼ 5 Lyman-break galaxies. We find that ∼68% of our size–luminosity measurements fall within or below the same relation for Lyman-break galaxies atz∼ 4. This study observationally confirms expectations that atz∼ 5 Lyman-break and GRB host galaxies should trace the same population and demonstrates the utility of GRBs as probes of hidden star formation in the high-redshift Universe. Under the assumption that GRBs unbiasedly trace star formation at this redshift, our nondetection fraction of 7/23 is consistent at the 95% confidence level with 13%–53% of star formation at redshiftz∼ 5 occurring in galaxies fainter than our detection limit ofM1600Å≈ −18.3 mag.more » « less
-
Abstract We present optical/UV observations and the spectroscopic classification of the transient AT2023vto as a tidal disruption event (TDE) atz= 0.4846. The spectrum is dominated by a broad blueshifted Heiiλ4686 emission line, classifying it as a member of the TDE-He class. The light curve exhibits a persistent blue color ofg−r≈ −0.4 mag, long rise, and decline timescale, with a large peak absolute magnitude ofMg≈ −23.2, making it the most luminous of the classical optical TDEs (H, H+He, He) discovered to date by about 1.5 mag. We identify the host galaxy of AT2023vto in archival Pan-STARRS images and find that the transient is located at the galaxy center. Modeling the light curves of AT2023vto, we find that it resulted from the disruption of a ≈8M⊙star by a ≈107M⊙supermassive black hole. The star mass is about 5 times larger than the highest star masses previously inferred in TDEs, and the black hole mass is at the high end of the distribution. AT2023vto is comparable in luminosity and timescale to some putative TDEs (blue featureless continuum), as well as to the mean of a recently identified population of ambiguous nuclear transients (ANTs). ANTs have been speculated to arise from tidal disruptions of massive stars, perhaps in active galactic nuclei, and AT2023vto may represent a similar case to ANTs but in a dormant black hole, thereby bridging the TDE and ANT populations. We anticipate that the Rubin Observatory/LSST will uncover similar luminous TDEs toz∼ 3.more » « less
-
Abstract Stripped-envelope core-collapse supernovae can be divided into two broad classes: the common Type Ib/c supernovae (SNe Ib/c), powered by the radioactive decay of56Ni, and the rare superluminous supernovae (SLSNe), most likely powered by the spin-down of a magnetar central engine. Up to now, the intermediate regime between these two populations has remained mostly unexplored. Here, we present a comprehensive study of 40luminous supernovae(LSNe), SNe with peak magnitudes ofMr= −19 to −20 mag, bound by SLSNe on the bright end and by SNe Ib/c on the dim end. Spectroscopically, LSNe appear to form a continuum between Type Ic SNe and SLSNe. Given their intermediate nature, we model the light curves of all LSNe using a combined magnetar plus radioactive decay model and find that they are indeed intermediate, not only in terms of their peak luminosity and spectra, but also in their rise times, power sources, and physical parameters. We subclassify LSNe into distinct groups that are either as fast evolving as SNe Ib/c or as slow evolving as SLSNe, and appear to be either radioactively or magnetar powered, respectively. Our findings indicate that LSNe are powered by either an overabundant production of56Ni or by weak magnetar engines, and may serve as the missing link between the two populations.more » « less
-
Abstract We present the discovery of the radio afterglow of the short gamma-ray burst (GRB) 210726A, localized to a galaxy at a photometric redshift ofz∼ 2.4. While radio observations commenced ≲1 day after the burst, no radio emission was detected until ∼11 days. The radio afterglow subsequently brightened by a factor of ∼3 in the span of a week, followed by a rapid decay (a “radio flare”). We find that a forward shock afterglow model cannot self-consistently describe the multiwavelength X-ray and radio data, and underpredicts the flux of the radio flare by a factor of ≈5. We find that the addition of substantial energy injection, which increases the isotropic kinetic energy of the burst by a factor of ≈4, or a reverse shock from a shell collision are viable solutions to match the broadband behavior. Atz∼ 2.4, GRB 210726A is among the highest-redshift short GRBs discovered to date, as well as the most luminous in radio and X-rays. Combining and comparing all previous radio afterglow observations of short GRBs, we find that the majority of published radio searches conclude by ≲10 days after the burst, potentially missing these late-rising, luminous radio afterglows.more » « less
-
Abstract In 2019 November, we began operating Finding Luminous and Exotic Extragalactic Transients (FLEET), a machine-learning algorithm designed to photometrically identify Type I superluminous supernovae (SLSNe) in transient alert streams. Through this observational campaign, we spectroscopically classified 21 of the 50 SLSNe identified worldwide between 2019 November and 2022 January. Based on our original algorithm, we anticipated that FLEET would achieve a purity of about 50% for transients with a probability of being an SLSN,P(SLSN-I) > 0.5; the true on-sky purity we obtained is closer to 80%. Similarly, we anticipated FLEET could reach a completeness of about 30%, and we indeed measure an upper limit on the completeness of ≲33%. Here we present FLEET 2.0, an updated version of FLEET trained on 4780 transients (almost three times more than FLEET 1.0). FLEET 2.0 has a similar predicted purity to FLEET 1.0 but outperforms FLEET 1.0 in terms of completeness, which is now closer to ≈40% for transients withP(SLSN-I) > 0.5. Additionally, we explore the possible systematics that might arise from the use of FLEET for target selection. We find that the population of SLSNe recovered by FLEET is mostly indistinguishable from the overall SLSN population in terms of physical and most observational parameters. We provide FLEET as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.more » « less
-
Abstract We present an expansion of FLEET, a machine-learning algorithm optimized to select transients that are most likely tidal disruption events (TDEs). FLEET is based on a random forest algorithm trained on both the light curves and host galaxy information of 4779 spectroscopically classified transients. We find that for transients with a probability of being a TDE,P(TDE) > 0.5, we can successfully recover TDEs with ≈40% completeness and ≈30% purity when using their first 20 days of photometry or a similar completeness and ≈50% purity when including 40 days of photometry, an improvement of almost 2 orders of magnitude compared to random selection. Alternatively, we can recover TDEs with a maximum purity of ≈80% and a completeness of ≈30% when considering only transients withP(TDE) > 0.8. We explore the use of FLEET for future time-domain surveys such as the Legacy Survey of Space and Time on the Vera C. Rubin Observatory (Rubin) and the Nancy Grace Roman Space Telescope (Roman). We estimate that ∼104well-observed TDEs could be discovered every year by Rubin and ∼200 TDEs by Roman. Finally, we run FLEET on the TDEs from our Rubin survey simulation and find that we can recover ∼30% of them at redshiftz< 0.5 withP(TDE) > 0.5, or ∼3000 TDEs yr–1that FLEET could uncover from the Rubin stream. We have demonstrated that we will be able to run FLEET on Rubin photometry as soon as this survey begins. FLEET is provided as an open source package on GitHub: https://github.com/gmzsebastian/FLEET.more » « less
An official website of the United States government
